
Python for MATLAB®
Programmers

Learning and Leveraging Python When You Know MATLAB

By Andrew Janke and Michael Patterson

Python for MATLAB Programmers by Andrew Janke and Michael Patterson is
licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Release notes:

January 23, 2019: First published.

March 31, 2019: Published to a GitHub public repository under a Creative
Commons Attribution ShareAlike 4.0 International License.

August 25, 2020: Latest release.

1

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://github.com/apjanke/PythonForMatlabProgrammers

Introduction
If the title of this paper caught your eye, chances are you have programmed in
MATLAB for some time. You know the MATLAB language, the development
environment, and probably a few toolboxes. And yet you saw the word Python in the
title and kept reading.

Alongside MATLAB, Python has evolved into a powerful and popular programming
language. Python can interact with MATLAB, and thus could augment or streamline
some of your current MATLAB-based programming efforts. That is, if only you knew
more about the Python language.

This article’s authors have more than thirty years combined programming experience
with MATLAB and numerous other languages. Over the past several years we’ve also
worked with Python, and we know firsthand that there’s room for the Python language
in a MATLAB programmer’s toolbox. But to our knowledge nobody has written a
comprehensive guide to help a MATLAB programmer discover Python. Until now.

If you are a MATLAB programmer and you’ve been wondering what the Python
programming language is or if it might be of value to you, this article is for you. If you
want to learn about Python but don’t want to spend a week reading tutorials, this
article is for you. We hope that by the time you’ve read this article, assuming that you
do, you’ll agree that we’ve provided a quick way to discover Python given your
background in MATLAB programming.

Objectives of this Article
Because MATLAB and Python have many similarities, and because you already know
the former, learning about the latter should come easy. The primary objective of this
article is to provide you with a quick, familiar way of discovering Python. We will not
try to present the entire Python language; we’ll instead focus on those parts most
relevant to a person coming from your background.

In addition to presenting the Python language we’ll introduce the Python ecosystem, a
set of libraries and tools that provides Python with features and capabilities you’ve
come to enjoy with MATLAB. The Python ecosystem is vast, and a second objective
of this article is to filter the ecosystem to those parts that will likely be of importance to
you.

A third objective is to present you with an unbiased view of both languages. There are
plenty of websites and articles that claim to prove one language is somehow better than
the other; we find those discussions to be subjective, biased, and often
misrepresentative of one or both languages. We will not suggest that you switch from
one language to the other. We find tremendous value in MATLAB, but we also find
value in Python. Each language has its strengths and the two products can interoperate.
So perhaps you’ll find reasons to use both languages, as we do.

2

Editing and Distributing this Article
As just mentioned, we have a goal of keeping this article brief. However, we’ve
received many suggestions of additional material for the article, and we value those
suggestions. In March 2019 we open-sourced the article and published it to a GitHub
public repository.

Readers are encouraged to edit or add material by submitting pull requests from the
GitHub repository. If you are not comfortable doing so but have corrections,
additions, suggestions, criticisms, etc. please direct them to the authors. We will give
proper acknowledgement to all who contribute to this article.

This article is licensed under the Creative Commons Attribution ShareAlike 4.0
International License. The article is available to download, edit, expand upon, revise,
re-publish, etc. to suit your needs. Want to re-publish this article as a set of web
pages? Feel free. Want to use this article for material in a class you teach? Again, feel
free. Under the terms of the Creative Commons license, you have full access to the
article but the article must retain the original author’s names.

Conventions
We will use only a few conventions in this document, again in the name of simplicity.
Code that you would enter in a Python console is prefaced by the standard >>>
Python prompt. Continuation lines are prefaced by the standard ... continuation
marks.

On the rare occasion that we reference an operating system, we reference only
Windows even though Python also runs on Macintosh and Linux. We believe that the
Windows-based references are clear enough that translating to the other operating
systems will be straightforward.

MATLAB and Python, at a High Level
Like MATLAB[1], Python is an interpreted, interactive, object-oriented programming
language. MATLAB was first released in 1983; Python in 1991. Both are extensible
and designed for use by a wide audience.

You already know MATLAB’s key characteristics. Let’s assess, in as non-subjective
manner as possible, the high-level similarities of MATLAB and Python.

Both languages are interpreted.

Both languages can be used in either interactive or batch mode.

Both languages have high-level data types, such as arrays and classes.

Both languages incorporate dynamic, run-time variable typing.

Both languages and associated ecosystems are well documented.

3

https://github.com/apjanke/PythonForMatlabProgrammers
http://creativecommons.org/licenses/by-sa/4.0/

Both languages are extensible in C and C++. Both can also be used as an
extension to other languages.

Both languages can call one another.

Clearly the two languages have numerous similarities. But these are different languages,
designed by different people with different design objectives and different target
audiences. Each language has its own set of strengths and weaknesses. Some of the
key differences between the two languages are as follows; again, we will strive to be as
objective as possible.

MATLAB is targeted to an audience of engineers and scientists; Python is more
closely targeted to a computer science crowd.

Once installed, MATLAB provides not just a programming language; it offers
also a complete programming environment. Python is more modular: once
installed, you’ll need to go shopping for supporting modules and an Integrated
Development Environment.

MATLAB expresses linear algebra and array computations with notation that
mimics mathematical formulas. This is quite powerful for scientists and engineers.
In contrast, the Python language does not offer a mathematics-based language.
But the Python language is elegant, terse and very readable.

MATLAB has an extensive library of built-in functions, control structures, and a
sophisticated object model. Python, in contrast, has fewer built-in functions and
control structures, and a simpler object model. Which is better? One is more
powerful out of the box; the other is easier to learn. You get to choose.

In contrast, Python has more sophisticated features for exception handling.
Again, more powerful is good, but a shorter learning curve is too.

Both languages have numerous add-on libraries (Toolboxes or Modules). Python
has more add-on libraries, but the MATLAB libraries are commercially
developed, integrated with one another, fully tested and documented, and
supported by dedicated teams. Python libraries are developed in an open source
environment; such development efforts can produce excellent software, but users
need to verify the quality of the software they are considering.

The list goes on. Assuming you have access to both languages, you can use both to
extract the best of each. Let’s look at a few more differences that you’ll eventually
want to consider.

One major difference between MATLAB and Python is their respective licensing
models. MATLAB is commercial software and can be obtained only by paying a
license fee. Python is copyrighted but is open source and free for both personal
and commercial use.

Be aware that commercial licensing carries costs and risks other than a purchase
price. Your organization will need to manage its licenses and renew them each
year. An expired license can bring down a production system, so license
management is important. Furthermore, The MathWorks, like many vendors,
enforces their licenses through software called a license manager that is

4

additional software you will need to install and maintain. With this added
complexity comes operational risk; any component that fails can harm or take
down a production system.

Lastly, hard-core developers tend to want their software on multiple systems. But
many vendors, The MathWorks included, restrict you to a small set of
installations per license. For example, a standalone MATLAB license will allow
you to install on four systems, nothing more.

Millions of developers, including the authors of this article, accept and deal with
these license limitations. But you should be aware of them.

As already mentioned, MATLAB installs as a complete programming
environment. But Python is a component of a larger ecosystem. Python can be
used for system admin, network admin, building web pages, and more.

Python is at home on the web; that is, Python apps are easily hosted as web
apps. MATLAB apps can also be hosted as web apps, but this requires more
work.

Like MATLAB, Python supports single- and multi-dimensional arrays, and has
extensive functionality to perform numerical and scientific computing. But unlike
MATLAB this support is not part of the core product. Python obtains this
support from add-on libraries.

Unlike MATLAB, Python is multi-threaded. The core Python language is single-
threaded but module support of coarse-grain multi-threading is available.

Lastly, let’s consider the two languages from the point of view of a typical MATLAB
programmer (assuming we can stereotype here). Each product supports timeseries data
and has several date and time-specific data types. Each provides extensive
mathematical and scientific libraries. Each provides access to a wide collection of
linear algebra algorithms. Each provides extensive charting capabilities, including
geospatial charting. Each can compile source code to P-code. This list too, goes on.

In the end, MATLAB and Python differ in many implementation details but provide
many common capabilities.

Installation
Python is available for the Windows, MacIntosh and Linux operating systems. The
installation process is simple: just download the installer and click through its prompts.
Note that both x86 and x86-64 versions are available. Grab whatever latest version is
appropriate for your computer.

The examples of this article were created using Python version 3.7. None of the
examples have been tested on earlier Python versions. As of December 2019, Python
version 3.8 was released, and we expect that the examples to follow will be forward-
compatible. We thus suggest that you download and install Python version 3.7 or later.

Integrated Development Environments (IDEs)

5

https://www.python.org/downloads/

You may eventually want an IDE, and there are numerous to choose from. The Wiki
pages at python.org list approximately twenty IDEs. One that will likely be of interest
to you is Spyder, which provides a programming environment similar to MATLAB’s.
Be aware that some Python IDEs are quite sophisticated and are not trivial to learn. For
the purpose of running this article’s code snippets, you have two simpler options.

First, an IDE called IDLE ships with the Python download. This IDE is limited in
functionality but sufficient for our present needs. To run, first install Python as per the
above instructions. Then open a command window and enter idle. There’s some trial
and error in learning how to enter commands and code blocks into IDLE, but you’ll
catch on quickly.

Alternatively, you can skip the Python install and run Python commands online at any
of a number of websites that provide a Python engine. One such website is Repl.it.
The learning curve is shorter with this approach, and no installations are required.

For the moment, we recommend that you either use IDLE or an online Python engine.
We will return to the IDE topic in the chapter titled, The Python Ecosystem. At that
time, you’ll understand why we suggest you delay making a decision on an IDE.

Python Modules and Packages
Python uses modules and packages in the same way that MATLAB uses M-files and
toolboxes. A module is a file of Python code with a file name that ends with suffix .py;
a package is a directory of modules. There are so many modules and packages
publicly available that discovering them requires an investment of your time.

A list of public modules is available at the PSF Module Index. A searchable list of
packages is available at the Python Package Index. How many packages are available,
you ask? Nearly 150,000 as of late 2018. Again, the Python ecosystem is quite large.
From the PSF website, the most commonly used packages include:

NumPy: a library which provides arrays to support advanced calculations

SciPy: a library for mathematical, scientific, and engineering computations

Pandas: a library for data structures and data analysis

Matplotlib: a 2-d plotting library with a MATLAB-like interface

TKinter: de-facto GUI building interface

IPython: an interactive console, and tools for parallel and distributed computing

Most (perhaps all) of the MATLAB toolboxes have been reproduced as Python
packages. Even the MathWorks’ flagship product Simulink has a companion Python
package called bms. On the Package Index website, you’ll find packages for curve
fitting, statistics, mapping, analyzing text, AI, image processing, among hundreds of
topics.

Be aware that Python packages are developed in an open source environment.

6

https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
http://python.org
https://www.spyder-ide.org/
https://repl.it/repls/SlategreyGloomyLava
https://docs.python.org/3/py-modindex.html
https://pypi.org/
http://www.numpy.org/
https://www.scipy.org/
http://pandas.pydata.org/
https://matplotlib.org/
https://wiki.python.org/moin/TkInter
http://ipython.org/
https://pypi.org/project/bms/

Generally, these efforts produce quality software but there are no guarantees. In
contrast, MATLAB toolboxes are written by professional software developers at the
MathWorks, and the quality of their software is usually excellent. When selecting
Python packages, it’s a good practice to look for the project’s development page to
gauge its member involvement, project maturity, and bug reports. Most Python
projects are hosted on GitHub.

To register a module in the current workspace, Python uses an import statement.
Importing a module is similar to adding a folder to the MATLAB path: each process
makes additional definitions and logic available to the current workspace. We’ll
discuss the importing of modules and packages in great detail later on. For the
moment, just know that when you see an import statement in the following examples,
we’re registering Python files in the current workspace.

The Python Style Guide
Python is a terse, whitespace-sensitive language. A key objective of the language is to
be readable, and toward that goal the language adheres to PEP8: The Style Guide for
Python Code. Here, PEP is an acronym for Python Enhancement Proposal. Many
languages have preferred styles, but Python demands many of its style specifications.
Blank lines and indentations are important, and their proper use is not optional.
Eventually you will want to read the style guide, but early on you can also allow an IDE
to enforce the required conventions.

Getting Help
There will be times when reading this document that you’ll want additional information
on a data type, function or class. Python gives you several sources of help. Suppose
you want information about the int() function. From a Python console you can type:

int?
help(int)

The first command will provide you with a brief overview of the function. The second
command will provide a broader discussion. If you are using an IDE which is IPython-
based, you can also enter the following:

int?? # More details on the int() function

? # Help on IPython itself

%quickref # Quick reference on IPython

And of course, you can find online help at python.org or any of many Python-focused
websites.

[1]: MATLAB® and Simulink are registered trademarks of The MathWorks, Inc.

7

https://github.com/
https://pep8.org/
https://www.python.org/

Python Types
In the following sections of this document we’ll browse through the Python language
syntax. We will include code snippets. If you’ve installed Python on your computer, or
if you’ve chosen an online Python engine, you can try out the examples.

We’ll start with data types, and later move into control structures. Because we’ll
include code snippets below, you’ll have a good feel for the control structures before
we arrive at that section. Later, we will look at Python’s object-oriented programming
model. And lastly, we’ll look at select portions of the Python ecosystem.

Numeric Types
MATLAB and Python have many similarities in their numeric types and calculations
upon those types. The core Python library defines fewer types than MATLAB does,
but add-on libraries will fill any voids you may notice.

There are three distinct numeric types: int, float, and complex.

All of the usual calculations are supported, with the usual order of precedence.

The usual +, -, *, and / operations are supported.

There are other operations, again similar to MATLAB: remainder, floor, power,
negation, etc.

Python also provides an abbreviated syntax for the above operations: +=, -=, *=,
and /=. E.g., x += 1 is equivalent to x = x + 1.

Python has full support for floating point numbers, with mixed types converting
integers to floating point.

Integers are not fixed width, as they are in MATLAB. Rather, Python integers are
of arbitrary length, restricted only by your computer’s memory.

In addition to decimal integers, Python supports binary, octal and hexadecimal.

Most Python implementations represent the float data type as a 64-bit number.
The maximum value allowed is approximately 1.8 X 10^308. Larger values are
represented by the string inf.

Python also provides numeric subtypes, meaning types derived from the primary
types. Notable are Booleans, fractions, and decimal types.

Booleans
MATLAB and Python have many similarities in their Boolean types.

Python provides a Boolean data type which can assume either of two values:
True or False. Note that each value is capitalized. Booleans are a subtype of

8

integers.

As with MATLAB, Python provides Boolean operators: and, or and not.

Python provides eight comparison operations: <, <=, >, >=, ==, and !=, is, and
is not.

Comparison operations can be chained together. E.g., you can enter the following
into a Python console, with the final line resulting:

>>> x = 10
>>> 5 < x < 15
True

As another example, you can express the identity law of Boolean algebra:

>>> x + 0 == 0 + x == x == x*x/x
True

Most objects (class instances) will evaluate to True. The following evaluate to
False:

Keywords None and False.

Any numeric with a value of zero: 0, 0.0, 0j, Decimal(0) and Fraction(0,1).

Empty sequences, including ‘’, [], (), and {}. We’ll cover sequences
momentarily.

User-defined objects can be instrumented to return False.

Sequences
MATLAB is all about matrices; Python’s closest primary type match is a sequence.
The sequence data type is a building block to what MATLAB calls vectors and arrays.
For the moment we’ll focus on Python’s primary data types, and later we’ll return to
the topics of vectors and arrays.

In Python, a sequence is a string, a list, a set or a tuple. We’ll examine each of
these in order, and we’ll find common features in each.

Sequences are important: they are versatile, and all sequences are iterable
objects. We’ll cover iterables in more detail later on, but for now think of an
iterable as an object capable of returning its members one at a time. As an
example, a for-statement iterates over the items of a sequence. You can do the
following:

>>> var = 'abc' # Strings are iterable objects.
>>> for v in var: # Blocks of code are terminated with a blank line.
... print(v) # There are no end statements in Python. Nor do lines
 # end with semicolons.

9

In the above code, several coding conventions become apparent. The >>> mark
is the Python console prompt. The ... marks are continuation marks and are not
something that you type into the console; they instead are placed there by the
console to denote that the logical block is continuing. This is the convention of
official Python documentation. A colon initiates a logical block of code, and that
logical block of code is indented four spaces. Comments begin with a pound sign
(#). Lastly, a blank line terminates a logical block. The above lines of code will
produce:

a
b
c

Indentation is required, as it is how Python detects constructs. The standard
convention is that an indent consists of four spaces, though you can choose any
number of spaces greater than zero.

Python statements do not terminate with a semicolon, although they can to no ill
effect. Unlike with MATLAB, omitting the semicolon will not echo the
statement’s result to the screen; with Python, you have to purposely print
something to see its value.

We mentioned earlier that Python is a terse language. Iterables reflect that
characteristic. A Python sequence is understood to be comprised of elements
that can be acted upon individually. As such, looping constructs become easier
to write.

All Python sequences employ zero-based indexing, as opposed to MATLAB’s
one-based indexing. Building on the example above:

>>> var[0]
'a'

The above example illustrates two departures from MATLAB conventions. First,
Python uses zero-based indexing on all sequence types; MATLAB uses one-
based indexing. Secondly, Python uses square brackets to encapsulate its
indices; MATLAB uses parentheses. MATLAB is a bit of an outlier here, as most
programming languages follow the Python conventions.

Use of square brackets is a helpful convention, as the brackets distinguish indexing
from function or method calls. This is just one of many Python conventions that
improve code readability.

Sequences are important to the Python language: they provide built-in types such as
strings, lists and tuples. And sequences are a building block to many of Python’s
derived data types such as vectors and arrays. We’ll cover the built-in sequence types
first, and later return to the derived types.

Strings
The sequence string type is one that will be familiar to you. However, specification of

10

and operations on Python strings differ from what MATLAB provides.

Use either single or double quotes to enclose a string. E.g.,

>>> str = 'abc'

Concatenate using a ‘+’ sign; multiply with a ‘*’ sign. E.g.,

>>> 2 * 'ab' + 'c'
'ababc'

When you need to create a long string and want to break it across several lines,
you have several options. The preferred way, defined in PEP 0008, is simply to
enclose the string in parentheses. E.g.,

>>> str = ('abc'
... 'def')
>>> str
'abcdef'

You can also continue a line with a backslash. E.g.,

>>> str = 'abc' \
... 'def'

You can also enclose a multi-line string in triple quotes. E.g.,

>>> str = '''abc
... def'''

Index reference a string with zero-based indexing, e.g.,

>>> str[0] # All sequence data types employ zero-based indexing.
'a'

Multi-element indexing is called slicing, e.g., str[0:2].

>>> str = 'ThisIsATest'
>>> str[0:4] # The upper bound is not included in the output.
This

Strings are an immutable sequence data type. Immutable types cannot alter their
values once set. For example, the following series of commands will issue an
error:

>>> str = 'abc'
>>> str[0] = 'A'
TypeError: 'str' object does not support item assignment

11

https://www.python.org/dev/peps/pep-0008/#maximum-line-length
https://docs.python.org/3/glossary.html

To alter a string, concatenate the elements you wish to retain with any new text.
The following will work:

>>> str = 'A' + str[1:3]
>>> str
'Abc'

The immutability property of strings may be disconcerting to a MATLAB programmer
who is used to changing strings with several of MATLAB’s built-in string processing
facilities. Rest assured that Python provides similar facilities via add-on modules.

Python provides several techniques for variable substitution and formatting in strings,
but these differing methods appear to be converging onto a new technique called
formatted string literals, or f-strings.

Here’s an example of variable substitution using an f-string. We’ll create a date
string and then substitute it into a print statement. It should be noted that Python
provides date/time facilities for obtaining the current date and time, so one would
not normally create a date string as we do below.

>>> today = '01-Jan-2018'
>>> print(f'The current date is {today}')
The current date is 01-Jan-2018

The f-string facility also provides formatting options. For example, floats can be
formatted with the syntax f'{value:{width}.{precision}}', where:

value is any expression that evaluates to a number.

width specifies the total number of characters to display, including the decimal
point. However, if value needs more space than width specifies, width will
automatically increase to accommodate. If width is omitted, f-string formatting
will simply use as much width as necessary.

precision indicates the number of characters used after the decimal point.

A few examples follow.

>>> import math
>>> f'Pi = {math.pi:5.3f}'
'Pi = 3.142'
>>> f'Pi = {math.pi:6.3f}'
'Pi = 3.142'

Python’s f-strings are both powerful and syntactically terse. An expression within an f-
string, the component inside the {}, is just that: an expression. It can be a variable
reference, a computation, a method call, a library call or any combination of
expressions you can dream up.

12

https://www.python.org/dev/peps/pep-0498/

Python provides substantial capabilities for creating and printing strings. It’s a topic
we’ll have to leave for now, for space considerations.

To close the topic on strings, let’s discuss how strings are objects in Python, and
some of the implications of that fact. Within this text we’ll repeatedly remind you that
in Python, everything is an object. Strings are no exception. Consider the following:

>>> s = 'python'
>>> s.capitalize()
'Python'

Here, we applied a method called ‘capitalize’ to the object named ‘s.’ Strings are of
data type str and as such can also be created with the str command (an object
constructor):

>>> s = str(object='python')
>>> s
'python'

You’ll probably never need to use the str() constructor, but it’s worth knowing that the
built-in Python classes allow you to construct objects either with a constructor, or via a
shortcut. For strings, that shortcut is to just enclose characters in quotes. These
shortcuts are called ‘literals.’ More on this topic later.

Lists
The sequence list type is of great importance to a programmer that knows MATLAB.
A Python list is similar to a MATLAB cell vector and provides a building block to
numeric vectors and higher-order matrices and arrays.

A list is a compound, mutable, sequence data type.

There are other compound data types, but the list is the most versatile.

By compound, we mean that a list’s elements can contain heterogeneous data
types.

Lists are also ordered, meaning that once the order of the list’s elements is set, it
will remain until purposely altered.

Lists are enclosed in square brackets. To create an empty list, use either of the
following:

>>> x = [] # A literal, as discussed earlier
>>> x = list() # A constructor

Assign lists with a comma-separated set of elements in square brackets, e.g.,

>>> x = [0, 1, 2, 3] # Homogeneous list
>>> y = ['a', 'b', 1, 2, 3]. # Heterogeneous list

13

You will sometimes see a list defined across multiple lines, e.g.,

>>> x = [1, 2, 3,
... 4, 5, 6,
...]

In the above, the IDE being used automatically added the ... continuation
marks, and also automatically indented the continuation lines. Note that we’ve
included a trailing comma (after the six). Python allows this, as it makes it easier
to add more lines of data later on, assuming that the above code was entered into
an editor. When Python executes the above command, the line separations and
trailing comma are removed. E.g.,

>>> x
[1, 2, 3, 4, 5, 6]

Lists, like all sequences, are zero-indexed, e.g., x[0].

As with strings, a slice of a list returns a portion of the original list, For example,

>>> x = [0, 1, 2, 3]
>>> x[1:3] # The upper bound is not included in the returned slice
[1, 2]

Recall that strings are concatenated with the ‘+’ symbol. Lists are concatenated
the same way. E.g.,

>>> x = [0, 1, 2, 3, 4]
>>> y = x + [5, 6, 7, 8, 9]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The previous result will be unexpected for most MATLAB programmers. As
shown in the example, Python did not interpret the ‘+’ symbol to mean, ‘add the
two lists element-by-element’ like MATLAB would. Rather, Python appended the
second list to the first. This is the behavior of the core Python language. Later,
we will show how you can obtain the more familiar vectorized operations.

Lists can also be appended with the append() method. E.g., y.append(9). Note
that the list type is a class and append() is a method rather than a function.

If a numeric sequence is desired, the equivalent of MATLAB’s y = 1:10 in
Python is y = list(range(1,11)). This is one of the few instances where
Python is not particularly terse. One can also employ a list comprehension to
create a sequence. We’ll cover list comprehensions in a later section.

One can also embed lists within other lists. This is sort of like having a
multidimensional array, but not quite equivalent. Consider the following:

>>> x = [[1,2,3],
[4,5,6],

14

[7,8,9]]
>>> x
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
>>> x[0][0]
1

For a programmer with a MATLAB background, lists may not appear particularly
useful. As an array, the list implementation would be difficult to work with. Fear not,
multidimensional arrays are available in Python, and we’ll cover that topic later.

Sets
A set is an unordered collection of objects. Because sets have no order, they cannot
be indexed or sliced.

A set is a mutable sequence data type.

Define sets using a comma-separated list of heterogeneous items in braces. E.g.,

>>> x = {'Dave', 'Tom', 'Mary', 'Dave'}
>>> x
{'Dave', 'Mary', 'Tom'} # Reordered and unique

The usual set operations are available. With sets one can test for membership,
perform intersections, unions and differences. E.g.,

>>> 'Tom' in x
True
>>> x.union({'Grace'})
{'Dave', 'Grace', 'Mary', 'Tom'}

Python also supports a frozenset type, which produces an immutable set.

Tuples
Tuples are another sequence data type. The tuple type is identical to the list type, but
immutable. By the way, the word tuple should be pronounced to rhyme with supple.

A tuple is a compound, immutable, sequence data type.

A tuple can be created in numerous ways. E.g.,

>>> x = (1, 2, 3) # The parentheses are optional.
>>> x = 1, 2, 3
>>> x = tuple([1, 2, 3])

Tuples can have heterogeneous elements. E.g.,

15

>>> x = ('y', 3, 4)

Tuples can employ parentheses on assignment, but require the usual square
brackets on reference:

>>> x[0]
'y'

Although tuples are immutable, their elements can be mutable objects such as
lists.

Tuple assignment is also called tuple packing: t = 1, 2, 3.

The reverse is called tuple unpacking: x, y, z = t.

Multiple assignments on a single line is a special case of tuple unpacking: x, y =
1, 5/3. This is called, more generally, sequence unpacking, as the right-hand
side of the assignment can be any sequence.

Tuples are often used in function signatures.

Tuples are iterables.

Lists vs. Tuples
A list is a heterogeneous sequence of mutable objects. Define the elements in a
set of []. Elements are operated upon one by one.

A tuple is a heterogeneous sequence of immutable objects. Define the elements in
a set of (). Elements are operated upon as a group.

The key difference between lists and tuples is mutability. Use lists when you might
need to change, add or delete elements. Use tuples when you want permanency, or
when you need to create a composite key in a dictionary, a data type we will discuss
next.

Dictionaries
Python dictionaries are similar to MATLAB structures. Here are the key things to know
about dictionaries:

Dictionaries are also referred to as an associative array or a hash map.

Dictionaries are a separate data type, often considered to be the most versatile
Python data type.

More specifically, dictionaries are a mapping type, with an un-ordered, mutable
set of key/value pairs.

Whereas sequences are indexed by a range of indices, dictionaries are indexed

16

with keys.

Dictionary are mutable objects, but their keys must be immutable, e.g., strings or
numbers.

Lists, because they are mutable, cannot be keys.

A few examples:

>>> phonebook = {'Joe': 1234, 'Bob': 5678}
>>> meals = {1: 'breakfast', 2: 'lunch', 3: 'dinner'}

Per the above, dictionary assignments use curly braces, just like sets do. Python
can tell the two apart because dictionaries have pair-wise elements with a colon in
the middle of each element.

When the keys are strings, assignments have a simpler, optional syntax using
keyword arguments with the dict constructor:

>>> phonebook = dict(Joe=1234, Bob=5678)

To insert or update an item, use square brackets for indexing, e.g.,

>>> phonebook['Grayson'] = 2513

A tuple can be used to create a composite key, if all of its elements are
immutable. E.g.,

>>> phonebook = {('Joe', 'Home'): 1234, ('Joe', 'Work'): 5678}
>>> print(phonebook)
{('Joe', 'Home'): 1234, ('Joe', 'Work'): 5678}

This allows for greater specificity in keys. Similarly, the values in a dictionary’s
key/value pairs are not restricted to the scalars used above. E.g.,

>>> addressbook = {'Joe': ['123 Dearborn', 'Chicago', 'IL', 60602]}
>>> print(addressbook)
{'Joe': ['123 Dearborn', 'Chicago', 'IL', 60602]}

Within the dictionary type, the values of the key-value pairs can be of any type
including lists, user-defined objects, or even other dictionaries.

Use [] for list assignment, () for tuples, and {} for sets and dictionaries. If you
forget which symbols produces which class, you can use the Python interpreter
to remind you. E.g.,

>>> type([])
<class 'list'>
>>> type(())
<class 'tuple'>
>>> type({}) # Returns dict rather than set

17

<class 'dict'>
>>> type({1, 2, 3}) # Provide a better hint
<class 'set'>

Python Literals
Eventually you are going to come across the term literal in the Python literature; we’ve
used the term several times. It will be helpful for you to know what, exactly, that term
means. Every programming language has some concept of a literal, and Python is no
exception.

In Python, a literal is syntax that creates a specific object. When we introduced strings,
we mentioned that strings can be created either with a shortcut or with a constructor.
For example, the following commands are equivalent:

>>> string = 'abc'
>>> string = str(object='abc')

In the first line above, ‘abc’ is considered a literal. Literals produce data types; in the
above, the literal is a shortcut way to produce a string. Many of Python’s built-in
classes have literal representations. These include:

Type Constructor Literal Examples

Integer int() -1, 0, 1,

Complex complex() 2+3j, 0+5j, 2j

Boolean bool() True, False

Float float() 3.5, -2.7

String str() “”, ‘Hello’

List list() [], [1, 2]

Tuple tuple() (), (1,), (1, 2)

Dictionary dict() {}, {‘a’: 2}

Set set() {1, 2, 3}

Another characteristic of literals is that they are constants. In the following line of code,
‘a’ is a variable, and the number 5 is a literal:

>>> a = 5

18

Notice in the above table that each literal is a constant whose value cannot be changed.
Python defines yet more literals, but the above are the most commonly used. So when
you see the term literal in the Python literature, just know that a literal is a shortcut way
to instantiate a built-in class.

Closing
For now, we are done with data types. We’ll return to the topic later when we discuss
user-defined classes. Let’s look next at Python’s primary control structures.

Python Control Structures
Python’s core library provides a limited but versatile set of control structures. Add-on
packages provide many additional constructs, but the following discussion will be
limited to those of the core library.

Flow Control
Python provides the usual flow control constructs, with some minor syntax changes.

Here is an if-statement:

if x < 0:
 print('x is negative')
elif x == 0:
 print('x is zero')
else:
 print('x is positive')

Note again there’s no end statement. Nor are there semicolons at the end of each
line. Indentation is required, as it is how Python detects constructs. The Python
style guide requests indents of four spaces, not a tab.

Python does not define a switch-case construct.

Python has only two looping constructs: the while construct, and the for
construct. Here’s a while-statement:

>>> x = 0
>>> while x < 10:
... print(x, end=', ')
... x += 1

Here’s a for-statement. Python will iterate over the items of any sequence, as
discussed earlier.

19

>>> for x in 'abcd':
... print(x)

The above will print ‘a’, ‘b’, ‘c’, ‘d’ on separate lines. The same construct
works with lists:

>>> names = ['Dave', 'John', 'Mark']
>>> for x in names:
... print(x)

The above will print ‘Dave’, ‘John’, ‘Mark’ on separate lines.

The target list (‘names’ in the above example) is an iterable which serves up its
elements one at a time. Note the similarities to MATLAB, which can iterate in a
for-loop over a numeric array or a cell array.

Wondering how to use indices in a for-loop? There are several ways, and here is
one example:

>>> N = len(names)
>>> for i in range(0,N):
... print(i, names[i])
0 Dave
1 John
2 Mark

The range function will return the sequence of values 0, 1, …, N-1. We’ll see
later that range is an iterable object.

Using the enumerate function, we can simplify the above loop and obtain the
loop counter:

>> for i, v in enumerate(names):
... print(i,v)

When the list to print is instead a dictionary, an items method performs much
the same role as the enumerate function:

>>> names = {1: 'Dave', 2: 'John', 3: 'Mark'}
>>> for key, val in names.items():
... print(key,val)

Within looping constructs, Python supports the usual break and continue
statements.

Within for-loops, Python also supports an else clause: the else block will
execute when the iterable has been exhausted, but not following a break
statement. While-loops also support an else clause; here, the else block will
execute when the while conditional becomes false.

Those are the core, familiar control constructs. Again, the Python language is intended

20

to be lightweight. Let’s move on to a construct that may not be familiar to you.

List Comprehensions
The list data type is a key element of the Python language. Recall that a list is similar to
MATLAB’s cell vector. A construct called a list comprehension, or listcomp,
provides a compact syntax to create one list from another, or from an iterable.

List comprehensions eliminate the for-loop side-effect of creating an index.

Syntax is a bracket, followed by an expression, followed by a for-clause,
followed by an optional if-clause and then a closing bracket.

Nested for- and if-clauses are allowed. A few simple examples:

>>> Index = [i for i in range(10)] # Produces 0, 1, 2, ..., 9
>>> Squares = [x**2 for x in range(10)] # Produces 0, 1, 4, ..., 81
>>> Squares = [x**2 for x in range(10) if x != 5] # Skips x=5

The expression in a listcomp can be any expression, including another listcomp.
Consider the following examples.

>>> x = [[0, 1, 2],
... [3, 4, 5],
... [6, 7, 8]]

>>> [row for row in x]
[[0, 1, 2], [3, 4, 5], [6, 7, 8]]

>>> [row[i] for row in x for i in range(3)]
[0, 1, 2, 3, 4, 5, 6, 7, 8]

The above is equivalent to the following:

>>> out = []
>>> for row in range(3):
... for i in range(3):
... out.append(x[row][i])

The following comprehension will transpose x. Note that the order of nesting is
reversed with this construct. In this example, the expression is another listcomp,
and is referred to as a listcomp inside a listcomp.

>>> [[row[i] for row in x] for i in range(3)]
[[0, 3, 6], [1, 4, 7], [2, 5, 8]]

Dictionaries can also be assigned with list comprehensions:

21

>>> {x: x**2 for x in (2,4,6)}
{2: 4, 4: 16, 6: 36}

Lastly, it is possible to employ an if-else in list comprehensions. This is achieved
though Python’s ternary conditional, an expression which takes the form:

>>> x if C else y # C is a conditional expression

For example, suppose you have a dictionary d with a mix of integers, doubles
and strings. If you want to convert all of the numeric types to type double, but
leave the strings alone, the following will work:

>>> d = {x: (float(d[x]) if d[x]*0 == 0 else d[x]) for x in d.keys()}

List comprehensions are a powerful feature of the Python language. They are memory
efficient, fast, and terse.

Iterables and Iterators
In Python every data type, whether built-in or user-defined, is a class. Some classes
have special capabilities, such as the ability of an object to produce its data set one
element at a time. Such an object is called an iterable.

An iterable is an object which can return successive items of a sequence created
by or stored inside the object.

All sequence types are iterables. These include the types list, range, string, and
tuple.

Sets and dictionaries are also iterables.

User-defined classes can be made iterable.

Iterables produce iterators. The iterator is what produces an object’s elements.

Iterators have several methods defined for them, but the one you should know
about is the next method, which returns the next item in a list. Once a list’s
elements are exhausted, next will issue an exception.

For example, let’s create an iterator from a list, and then produce the list’s
elements.

>>> x = [0, 1, 2] # A list, which is an iterable
>>> it = iter(x) # An iterator
>>> next(it)
0
>>> next(it)
1
>>> next(it)
2
>>> next(it)

22

https://docs.python.org/3/reference/expressions.html#conditional-expressions

Traceback (most recent call last):

Some functions return an iterable. The range() function, for example, creates an
iterable. We saw this earlier when discussing for-loops.

The function call range(0,5) creates an iterable object that will return [0, 1, 2,
3, 4] one element at a time.

>>> range(5) # This returns the object, an iterable
range(0, 5)

>>> list(range(5)) # This converts the iterable into a list
[0, 1, 2, 3, 4]

>>> it = iter(range(5)) # This converts the iterable into an
iterator

We also introduced the enumerate() function when discussing for-loops. The
enumerate function returns an iterable that produces a list of tuples. Recall from
our earlier example that the first element of each tuple will be a counter, and the
second the value obtained from the iterable. E.g.,

>>> x = ['a', 'b', 'c']
>>> list(enumerate(x))
[(0, 'a'), (1, 'b'), (2, 'c')]

Iterables and iterators are pervasive in the Python language, as they provide memory
efficient lists. You might not use them directly, deferring instead to for- and while-
loops, but knowing how such constructs are implemented will be valuable to you.

Generators
As mentioned in the previous section, user-defined classes can be made iterable. This
is, however, not Python’s preferred way of creating an iterator. There’s quite a bit of
coding involved with iterables, and computational overhead too. Generators are the
preferred way of creating iteration-enabled objects. There are two types of generators.

First is a generator function, which is a user-defined function that provides a
sequence much like an iterable does. In deference to space contraints, we’ll skip
an example here, and just describe what a generator function does.

A typical function performs computations and then returns a result. A generator
function is nearly identical in structure, but ends with a yield statement rather than
a return statement. The yield statement interrupts a loop, e.g., a for-loop or a
while-loop, and returns one item of a sequence. The function state is held in
memory; any subsequent call to the function produces the next item of that
sequence. This process of generating sequence items continues until the sequence
is exhausted. Generator functions are useful because they are highly efficient both
in computational performance and memory usage.

23

The second type of generator is the generator expression. These employ list
comprehensions and iterables to create an expression which can later be
executed.

In the following example, the first line produces, but does not execute, a
generator object. The second line executes the generator object, saving the results
as a list.

>>> squares = (x*x for x in range(1,5))
>>> list(squares)
[1, 4, 9, 16]

The first line of the above code looks like a listcomp, but it uses () rather than [],
and that tells Python to create a generator. As before with iterators, we can iterate
through a generator:

>>> squares = (x*x for x in range(1,3))
>>> next(squares)
1
>>> next(squares)
4

Generators are essentially lists that are awaiting completion. They are memory efficient,
and they are easy to store and to pass to methods and functions.

Lists, Revisited
Learning Python is a nonlinear process. As we learn more and more about the
language, we need to revisit earlier topics. Now that you know about iterables, we
should revisit list construction. Lists can be constructed in multiple ways:

Using square brackets, a literal, as discussed before. E.g., x = [1, 2, 3].

Using a list comprehension. E.g., y = [x for x in range(4)].

Deferring construction with a generator. E.g., gen = (x for x in
range(4)).

Using a constructor, as in the following examples:

>>> list('abc') # Strings are iterables
['a', 'b', 'c']

>>> list((1, 2, 3)) # Tuples are iterables
[1, 2, 3]

>>> list((x*x for x in range(1,5))) # Generators are memory-efficient
[1, 4, 9, 16]

24

Keep in mind that user-defined objects can be made iterable. We have not covered
such objects yet, but once we do, you’ll see that their contents can be converted into
list objects.

Functions
Python functions are similar to MATLAB functions, although Python signatures are
more versatile. Also, there are some interesting ways to use and reuse functions in
Python.

The basic structure of a function is:

def fun(arg1,arg2):
 """doc string""" # A doc string (like a MATLAB H1 line)
 # Blank line before code begins
 code
 # Blank line to end the function

Function arguments are always call by reference. Python does not support call
by value.[2]

To return a value(s), Python does not support an out = fun() construct.
Instead, Python uses return var at the end of the function.

If a function returns no value, the built-in value None is returned by default. The
value None has a type of NoneType.

Function arguments can be given default values. E.g.,

def input_name (prompt, retries=4, reminder='Please try again!'):
 """ doc string """
 # we'll skip the function's code for now

Default values are evaluated only once, and only at the point of the function
definition. As in the above, the arguments with default values must follow any
positional arguments. When defaults are given, those arguments become optional
for the caller.

Functions can be called with keyword arguments. E.g., to call the function just
defined we could type:

>>> input_name(prompt='Your name?', retries=10, reminder='Try again')

Once a keyword argument is provided, all remaining arguments (if provided) must
also be keyword arguments.

Function signatures are quite robust. Following positional arguments and
arguments with defaults, one can pass an arbitrary number of arguments with the
following construct:

25

def fun(arg1, arg2='test', *args):

This is similar to MATLAB’s vararg input. In the caller, following the positional
and keyword arguments, one can pass an arbitrary set of comma-separated
values. Inside the called function, the *args inputs will automatically be packed
into a tuple named args (in this example).

Expanding upon the above signature, one can also specify that a function is to
receive an arbitrary number of keyword arguments:

def fun(arg1, arg2='test', *args, **kwargs):

The above listed order of arguments is required. If provided, the trailing keyword
arguments will automatically be packed into a dictionary inside the function.

Suppose we wish for the above function to print its arguments. We’d have the
following:

def fun(arg1, arg2='test', *args, **kwargs):
 print(f'arg1: {arg1}')
 print(f'arg2: {arg2}')
 print(f'*args: {args}')

 for kw in kwargs:
 print(f'{kw}: {kwargs[kw]}')

Now call the function, as below, with the following outputs:

>>> fun(5, 'foo', 10, 15, a=20, b=25)
arg1: 5
arg2: foo
*args: (10, 15)
a: 20
b: 25

If a function signature requires individual arguments but the calling workspace has
a list or tuple, the latter can be unpacked on the fly with a star (’*’) syntax. For
example:

>>> list(range(0, 3))
[0, 1, 2]

The above is equivalent to

>>> x = [0, 3]
>>> list(range(*x))

Dictionaries can also be unpacked, and that syntax uses a double star.

The execution of a function introduces a new symbol table used for the local
variables of the function. Variable references in a function first look in the local

26

symbol table, then in the local symbol tables of enclosing functions, then in the
global symbol table, and finally in the table of built-in names.

Like everything else with Python, a function is represented internally as an object.
That means you can do some interesting things with functions, like pass them into
other functions. Consider the following simple example:

>>> def f(x): # Trivial function
... return x+1

The function f(x) is not just a function sitting in memory waiting to be invoked; it
is an object in the workspace that can be passed around.

>>> f?
Signature: f(x)
Docstring: <no docstring>
File: c:usersownerdocumentspython...
Type: function

Define a second function, which accepts the first function (or any function) as an
argument:

>>> def g(fun, x): # Pass a function into a function
... return 2*fun(x)

It’s a trivial example, but here’s how the two functions work together:

>>> f(5)
6
>>> g(f,5)
12

Anonymous (unnamed) functions are created with the lambda keyword. E.g.,

>>> f = lambda x,y: x/y
>>> f(x=10, y=2)
5
>>> f(1000, 10)
100

Such functions are commonly referred to as lambda functions or lambda
expressions. As with nested functions, lambda functions can reference variables
of the containing scope:

>>> def divideby(x):
... return lambda y: x/y

The above function returns a lambda object:

>>> divide10by = divideby(x=10)
>>> divide10by(5)

27

2

As mentioned earlier, functions are objects and can be passed around like data.
This is powerful, and it will take some getting used to. Consider the following
example, where we have a list of strings and we want to sort them, ascending
order, by the number of unique characters in each string.

>>> str = ['cook', 'zoo', 'ohnoooh']
>>> str.sort(key=lambda x: len(set(x)))
>>> str
['zoo', 'cook', 'ohnoooh']

How did the above work? First, strings are a class, and that class has a sort
method associated with it. The sort method allows a key argument, and we
passed a lambda function as the value of that argument. In other words, we
defined, on the fly, a function and then passed that function to the sort method.
For each element in variable str, the lamba function converted the string into a set,
thereby removing duplicate letters, and then computed the length of the remaining
characters. The length of the unique characters in each string then became the key
by which to sort the list of strings.

The above is equivalent to:

>>> [str[i] for i in [1, 0, 2]]

This is equivalent, but assumes that we somehow know the sort order. Using the
sort method and a lambda function in the first example, we were able to
determine the sort order on the fly.

Warnings
As with MATLAB, Python has facilities for warnings and exceptions (errors). In fact,
Python has sophisticated facilities for these.

Warnings are objects and derive from a Warning class. A list of built-in Warning
subclasses is available in the Python Standard Library documentation. Users can create
their own warning classes, derived from the built-in classes. A warning filter allows a
user to process a warning through a sequence of pre-defined categories of warnings,
processing any match that is found with specific actions. The filter can suppress a
warning, escalate it to an exception, or print it. For all the sophistication, warnings can
also be very simple:

>>> import warnings
>>> warnings.warn('Something seems wrong')
__main__:1: UserWarning: Something seems wrong

28

https://docs.python.org/2/library/warnings.html

Exceptions
Python’s exceptions are a lot like MATLAB’s error facility, but more powerful. The
syntax is similar, and we’ll point out the differences.

Inside a program, a user might want to manually check for an error and if encountered,
issue an exception. Suppose you are about to compute the standard deviation of a list
of values, but you want to enforce a minimum length to the list, e.g., ten data points.
Your code would look something like:

if len(x) <= 10:
 raise Exception('Too few data points')

The above block would raise (throw, in MATLAB terms) an exception.

Whereas MATLAB has try-catch blocks, Python defines try-except blocks. Here’s a
quick summary:

Like warnings, each Python exception is a class. E.g., NameError or TypeError.
There are dozens of built-in exception classes; you’ll find a complete list in the
Python Standard Library documentation.

Exceptions can be user-defined and will derive from the built-in Exception class.

Try-except blocks have added functionality compared to MATLAB. The outline
of a try-except block looks like:

try:
 # code
except NameError:
 raise Exception('Name is not defined.')
except ValueError:
 raise Exception('Value is not valid.')
else:
 # Code that is always executed if no exception is raised.
 # Useful for code that should not be part of the try-block.
finally:
 # Cleanup code that is always executed, regardless of whether an
 # exception was encountered.

As in MATLAB, it is not necessary to specify the class of error. E.g., the
following is permissible:

try:
 x = y / z
except:
 raise Exception('Looks like z was equal to zero')

However, when you are monitoring for and handling specific types of errors, use
of a built-in or user-defined exception class is recommended. E.g.,

try:
 x = y / z

29

https://docs.python.org/3/library/exceptions.html

except ArithmeticError:
 raise Exception('Looks like z was equal to zero')

As with MATLAB’s throw() function, use Python’s raise() function to issue an
exception. Any associated arguments are available to the exception instance.

While Python provides a long list of built-in exceptions you can catch, there will
be times when you won’t be able to anticipate a specific error type. Perhaps you
are interacting with the operating system, or a database, and the possible
exceptions are too broad in type to catch with a narrowly-focused built-in
exception. For these instances you can use an exception base class. E.g.,

try:
 x = some_function()
except BaseException as e:
 raise(e)

If you desire a stack trace and/or logging into a log file, use Python’s logging
module. E.g.,

import logging
try:
 y = 5 / 0
except:
 logging.exception('Division by zero')

Some objects have pre-defined clean-up actions that can occur regardless of any
exception thrown (or not). An example is the opening of a file. A with statement
will ensure that pre-defined actions occur even if not explicitly requested. For
example:

with open('some_file.csv') as file:
 for line in file:
 print(line)

Following execution of this block of code, the opened file will be closed
regardless of whether an exception was raised. The with statement is just
shorthand notation for a try-except block, but useful and convenient.

Listing the Python Version
You’ll need, from time to time, to know the version of Python that you are using.

Here’s how to get the version number from Python itself:

>>> import sys
>>> sys.version
3.7.0 (v3.7.0:1, Aug 27 2018, 04:59:51) [MSC v.1914 64 bit]

And from a shell window, simply enter python -V.

30

https://docs.python.org/3/reference/compound_stmts.html#with

Interacting with the Operating System
Eventually you’ll want to interact with the host computer’s operating system. Here’s a
sample of what you can do:

>>> import os
>>> os.getcwd()
>>> os.listdir()

You can change environment variables this way, change to a new directory, etc. To see
a list of all of the methods in the os module, use dir(os).

Miscellaneous
If you have been entering the above commands into a Python console window, you
might be wondering how to perform a few basic maintenance operations, like listing or
clearing the workspace variables. Python itself does not provide these features,
although you can certainly code your own version of whos or clear. However, if you
are using IPython or an IDE built on IPython, you will have access to magic
commands, commands that will be familiar to you except that they are prefixed by a
‘%’. Try the following:

>>> %who
>>> %whos
>>> %reset # Equivalent to MATLAB's *clear* command

There are a lot of magic commands, so you’ll eventually want to review those at the
above link. You can also get magic command help from the Python console with the
following command:

>>> %magic

In addition to the magic commands, the IPython console (we’re assuming you’ll
eventually use this) provides an introspection facility that helps you quickly examine
any variable you have defined. For example,

>>> x = list(range(5))
>>> x? # Can also use >>> ?x

Type: list
String form: [0, 1, 2, 3, 4]
Length: 5
Docstring:
Built-in mutable sequence.

Introspection works with objects, built-in functions and user-defined functions.

[2]: Strictly speaking, Python always passes a function argument using call by value.

31

https://ipython.readthedocs.io/en/stable/interactive/magics.html

However, the value passed is an object reference, not the object itself. Therefore, in
MATLAB terminology Python passes function arguments using call by reference.

Plotting
As you might expect, Python offers numerous libraries with which to create graphical
output. You’ll want to have a look at Plotly, Chartify, and Seaborn, among many
others. One of the most popular libraries is, naturally, Matplotlib, a library that tries to
reproduce MATLAB’s charting capabilities.

Let’s look at an example.

C:> pip install matplotlib # from a Windows terminal

>>> import matplotlib.pyplot as plt
>>> x = list(range(-100,101)
>>> y = [x**2 for x in x]
>>> plt.plot(x,y)

Matplotlilb provides 2-d charts, but other packages built upon Matplotlib provide 3-d
charts, as per the following example.

>>> from mpl_toolkits.mplot3d import Axes3D
>>> import matplotlib.pyplot as plt
>>> from matplotlib import cm
>>> from matplotlib.ticker import LinearLocator, FormatStrFormatter
>>> import numpy as np
>>> fig = plt.figure()
>>> ax = fig.gca(projection='3d')
>>> X = np.arange(-5, 5, 0.25)
>>> Y = np.arange(-5, 5, 0.25)
>>> X, Y = np.meshgrid(X, Y)
>>> R = np.sqrt(X**2 + Y**2)
>>> Z = np.sin(R)

>>> surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm, linewidth=0, antialiased=False)

32

https://plot.ly/python/
https://labs.spotify.com/2018/11/15/introducing-chartify-easier-chart-creation-in-python-for-data-scientists/
https://seaborn.pydata.org/index.html
https://matplotlib.org/

There are many examples on the web that illustrate Python’s graphing capabilities.
Rest assured that you can create all the charts you’ve grown accustomed to with
MATLAB.

Additional packages provide the ability to make interactive charts, to add filters,
and to create dashboards. Plotly, mentioned earlier, is an open-source package
that interfaces with both MATLAB and Python. In particular, have a look at
plotly.js, which is the plotting component of Plotly. Plotly.js is built on top of
D3.js and thus provides a rich set of dynamic, interactive charts. With Plotly.js,
you get all the features of D3.js, but you get to work in the MATLAB and Python
languages.

For statistical charts, you’ll want to check out the seaborn package, which is built
on top of Matplotlilb. The seaborn gallery has a collection of charts that are
readily available to you.

Lastly, as an open source language Python enjoys a wide audience of
contributors. Chart types for many specific data sets have been contributed to the
library of packages. Have a look at Yan Holtz’s Python Graph Gallery for an
overview of the chart types available in Python.

Object-Oriented Programming in
Python
At this point of the article we’ll dive a bit deeper into the Python programming
language. We’ll discuss namespaces, scopes, and then classes. Each of these differs
from the MATLAB model, and you need to be aware of the differences.

Namespaces and Scopes
Let’s start with namespaces and scopes, as these concepts are important prerequisites

33

https://plot.ly/python/
https://seaborn.pydata.org/index.html
https://seaborn.pydata.org/examples/index.html
https://python-graph-gallery.com/

for understanding classes.

A namespace is a mapping of names to objects, typically implemented as a
dictionary. Examples include built-in names, exception names, global names of a
module, and local names of a function.

Namespaces are implemented (currently, anyway) as dictionaries. The dictionary
keys are variable names, and the associated values are the objects that the names
point to.

In Python, a global namespace refers to the top-level space of a single module.
The global namespaces of two or more modules are not shared.

Attributes of an object are effectively a namespace.

A scope is a textual region of a program where a namespace is directly accessible.

At any time during program execution, at least three scopes are in effect. From
the innermost scope to the outermost, these are:

1. The innermost scope is that of any embedded function (a function
embedded in an enclosing function). When Python is trying to resolve a
reference, this innermost scope of local names is searched first.

2. The scopes of enclosing functions, containing non-local, but also non-
global names is the second-most inner scope. When resolving references,
this scope is searched second.

3. The next to last scope (the middle, or global scope) contains a module’s
global names.

4. The outermost scope (searched last) is the namespace containing built-in
names.

Variables can be declared global, in which case they will reside in the middle
scope. These variables will not be shared across modules.

Within the four scopes, variables flow from the outer scopes into the inner
scopes. That is, a variable declared in an outer scope can be referenced in an
inner scope. The converse is not true; variables defined in an inner scope cannot
be referenced in an outer scope. To alter this latter behaviour, variables in an inner
scope can be declared nonlocal, whereby they will pass by reference into any
outer scope.

Classes
For programming projects of non-trivial size, the use of classes is considered standard
practice. MATLAB provides a sophisticated class model that, while offering
programmers tremendous capabilities, is difficult to learn. Python’s class model is
much simpler, offers fewer capabilities, but is easier to learn. Let’s have a look.

In the following, we’ll make no attempt to explain object-oriented programming; we are
instead assuming you have covered this topic elsewhere. We’ll provide an outline of

34

what Python offers, from as usual, the perspective of a MATLAB programmer.

In Python everything is an object; in MATLAB most but not all things are objects.

Let’s look at a few simple Python examples of variables. Consider the following:

>>> x = []
>>> x?
Type: list
String form: []
Length: 0
Docstring: Built-in mutable sequence.

As the above shows, even the [] construct creates an object. In this case, variable x is
a list object. Or consider how a variable containing an integer has a class attribute:

>>> x = 5
>>> x.__class__
<class 'int'>

Classes are defined with a straightforward syntax. In the following example code, we
define a class, a docstring, an instantiation method, and then two class methods:

class MyClass:
 """A sample class definition""" # Like MATLAB's H1 line

 def __init__(self): # A constructor
 self.mydata = []

 def method1(self):
 self.mydata = 3.14159

 def method2(self):
 self.mydata = 3.14159 / 2

Class objects support only two kinds of operations: attribute references and
instantiation. Let’s look first at attribute references. Consider the following class
definition which defines one attribute and one method:

class MyClass:
 """Doc String"""
 x = 3.140

 def f(self,StringToPrint):
 print(StringToPrint)

You’ll need to save the above into a .py file. You can choose any name for the file;
let’s use simple.py. Back in the Python console window, we can type the following:

>>> import simple
>>> obj = simple.MyClass()
>>> obj.x
3.14

35

http://simple.py

>>> obj.f('test')
'test'

Both the attribute and the method are referenced with the same notation. Use of the
variable ‘self’ as the first argument to the above method is only a convention; this is,
however, the standard convention.

Now let’s look at an instantiation operation. Python uses a specifically named method
for instantiation, called __init__, as per the following example:

def __init__(self, day, activity):
 self.weekday = day
 self.activity = activity

When an __init__ method is placed into a class definition, it is automatically invoked
when the class is first instantiated.

Python supports class inheritance. The syntax is simply:

class SubClassName(BaseClassName):

In the above, BaseClassName must be in scope. If it is not, one can instead use:

class SubClassName(ModuleName.BaseClassName):

Subclass methods may either override or extend base class methods of the same name.
To call a super-class method from a subclass, use super(). For example, if a parent
class has a method called invite(), the subclass can reference the method with
super().invite().

Python supports both class (static) and instance variables. The location where
variables are defined in a class, rather than the use of keywords, dictates whether a
variable is a class variable or instance variable. E.g.,

def MyClass:
 ClassVar = 3.14 # Class, or static variable

def __init__(self):
 self.InstanceVar = 3.14159 # Instance variable

Static variables should be used with care. If you create two instances of the above
class and use one of them to alter the value of ClassVar, that value will then appear
also in the second instance.

Python also supports static methods. This introduces the topic of Python’s class
decorators, which we consider to be an advanced topic best saved for later. But for
now, know that Python supports both static and instance methods.

36

In MATLAB, a class resides in a file of the same name. In Python, multiple classes can
be defined in one file, and that file can take any name. More generally, a class can be
defined anywhere, e.g., inside of a function or an if statement (not that you would do
that, of course). Classes can be embedded within one another, with the inner class
having access to the outer class namespace. The author of Python, Guido van
Rossum, maintains a blog where he has an interesting discussion of this topic.

There are some significant differences between the MATLAB object model and
Python’s. Here are the biggest ones:

MATLAB provides private attributes (for both properties and methods); Python
does not.

Further, MATLAB provides numerous property attributes such as Abstract=true.
Python offers none of these.

MATLAB also offers object events, or listeners; Python does not.

MATLAB requires that a file can hold only one class; Python has no such
restriction.

There are many more differences between the MATLAB and Python object models. In
general, the Python model chooses simplicity over sophistication; vice-versa for
MATLAB. Which model is the best choice will depend upon your programming
needs.

Mutability
Python considers everything to be an object. Once initiated, some objects allow their
state to be changed, meaning they are mutable. Other objects prohibit state changes;
these objects are immutable. Knowing which classes are mutable and which are not is
important. Here’s a reference list:

Mutable classes: list, set, dict and byte array

Immutable classes: bool, complex, float, int, str, tuple and frozenset

It may seem strange that Python defines so many immutable classes. But beyond the
primitive data types (bool, complex, float and int) only three classes are immutable.
And of those three, the tuple class allows its contents to contain mutable objects.

Copy That
To close out this chapter, let’s discuss an interesting, and likely unexpected, feature of
Python: the language provides three mechanisms for copying variables. We think it’s
best to inform you of this now, so that you don’t learn about this after tripping over it.

Suppose you have a list referenced by the variable x. If you then create a new variable
y with the operation y=x, the new variable y simply points to the original list; the
variable y does not reference a new copy of the list. This is an important concept to

37

http://python-history.blogspot.com/2009/03/how-everything-became-executable.html

master as it effects all Python data types. On assignment, Python will bind two objects
together rather than make a copy. Consider the following:

>>> x = [0, 1, 2, 3]
>>> y = x
>>> x[0] = 99
>>> y
[99, 1, 2, 3]

By updating x we also updated y, because y was bound to x. From the MATLAB
perspective, x and y are similar to handle objects; unlike MATLAB, Python defaults to
this behavior.

When necessary Python will allow you to make a true copy. But there are two flavors
of true copies. The first is called a shallow copy. For simple objects like a list that
don’t contain nested objects, the shallow copy is all you need.

>>> import copy
>>> x = [0, 1, 2, 3]
>>> y = x.copy()
>>> x[0] = 99
>>> y
[0, 1, 2, 3]

When you are trying to copy more complex objects, such as a user-defined object
whose attributes reference other objects, you will need a deep copy of the list. In this
third case, use x.deepcopy() instead of x.copy().

An important exception to binding is in making array slices. When an array is sliced,
the returned object is a new object, not a view into the original object. E.g.,

>>> a = list(range(5))
>>> b = a[2] # A slice, which is not bound to variable 'a'.
>>> b
2
>>> b = 99 # Change the value of b.
>>> a
[0, 1, 2, 3, 4] # Variable a is unaffected.

Biggest Differences
Now that you’ve seen Python’s primary data types and control structures, let’s catalog
the major differences between the Python and MATLAB languages. Here are the items
that made our list. If you are going to program in the Python language, you’ll want to
spend some time studying these topics further.

Python array indexing: zero-based rather than one-based, and square brackets
rather than parentheses.

List comprehensions: there’s really no equivalent in MATLAB.

38

https://docs.python.org/3/library/copy.html
https://docs.python.org/3/library/copy.html

Iterables, iterators and generators: important features of the Python language.
MATLAB does not offer these features, although you can code them yourself.

Mutability: this is an important concept in Python. This same concept exists in
MATLAB, but programmers are largely shielded from and thus often unaware of
it.

Bindings, shallow copies and deep copies: by default Python treats objects like
MATLAB handle objects.

We have now covered the primary Python data types and control structures. In the
third and last chapter of this article, we’ll look at the expansive Python ecosystem.

The Python Ecosystem
As a MATLAB programmer you may be a little nervous about Python at this point.
We covered the primary data types and built-in functionality, but said nothing of
matrices, multi-dimensional arrays, array operations or vectorization. We haven’t even
mentioned common mathematical operations such as matrix inversion, eigenvalue
computation, interpolation or the like.

The closest we came to any of those discussions was to introduce lists, and we noted
that lists are like MATLAB’s cell array. But we also noted that Python lists do not
support matrices or higher-dimensional arrays. The core Python language simply does
not replicate the MATLAB features you rely upon. But fear not, for Python is designed
to be an extensible language and its ecosystem provides the data types and
functionality you’ve been wondering about.

The Python ecosystem, the libraries, IDEs and tools that complement the Python
language is vast. We noted earlier that learning the Python language requires a
substantial, yet limited, amount of your time. In contrast, discovering all that is
available in the Python ecosystem is, well, good luck with that. In the following
sections, we will introduce you to those portions of the ecosystem that are likely to be
of value to you. We cannot cover everything that might be of interest to you, but we’ll
start the conversation and provide you with links to additional material.

Integration with Source Code Control
Python itself does not integrate with source control systems, but many of its IDEs do.
PyCharm, for example, has an intuitive interface to more than ten source control
systems, including GitHub, CVS and Subversion. In PyCharm, go to File->Settings-
>Version Control and choose your SCC of preference. Once your settings are made,
there’s a VCS menu on the PyCharm toolbar. It’s that easy. Note that file names within
the project listing (left side of the PyCharm window) are color coded to reflect their
SCC state.

39

Back to Modules and Packages
As mentioned earlier, a searchable list of 150,000 Python packages is available at the
Python Package Index. Before reinventing the wheel, search through the index to see if
someone has already published the code you need. Downloading packages is easy,
and your IDE may make it trivial for you. Let’s talk now about importing modules and
packages into your Python workspace.

In Python, a module is a .py file; an organizational unit.

A package is a collection of modules in a directory. A package will also contain a
file called init.py.

The module name is the name of the file (minus the .py extension).

A module typically contains a set of function definitions but may also contain
executable statements; these statements initialize the module and are executed
only the first time the module is imported.

The base workspace is referred to as the main module.

An import introduces the referenced module name to the current symbol table
and executes any executable statements at the top of the module.

Each module has its own symbol table. That table is called a global table and is
used by each function in the module. The scope of a global table is its module;
modules cannot see one another’s global table.

Packages provide a further separation of scope. Whereas modules each contain
their own global variable scope (thus shielding each other from variable and
function name collisions), packages shield one another from colliding module
names.

Modules are imported with the import command.

>>> import statistics as stat

The above will import (register) the statistics module, abbreviated as stat. This
does not actually load the statistics functions into the current workspace. Rather,
the command registers the names of the functions in the module, and makes them
available with, e.g.,

>>> avg = stat.mean(x)

When you import a module, all of the functions it contains will be registered.
This means that a .py file can contain multiple functions, and all will register.
Specific functions in a module can be imported with, e.g.,

>>> from statistics import mean

The above will register the mean() function but will not register the module name.

40

https://pypi.org/

On startup, Python loads the modules of its standard library. The following list
comprehension will print the set of currently imported modules:

>>> import sys
>>> [str(m) for m in sys.modules]

To determine which functions are defined in module, use the built-in dir()
function. For example:

>>> import sys
>>> dir(sys)

We’ll skip the output here, as it is lengthy.

To install packages, a utility called ‘pip’ is recommended. Here’s how to use pip to
install the matplotlib package.

Find pip.exe on your computer; this executable should have installed as part of the
Python install. Add that directory to Windows’ path variable. Just type ‘Edit
Environment’ in the Windows task bar and you’ll find the variable editor. See the
following link for instructions.

In a command prompt window (Windows, not Python), enter the following:

pip install matplotlib
pip freeze

Occasionally you’ll want to upgrade the installed version of pip. To do so, enter (in a
command prompt window):

pip install --upgrade pip

With thousands of available packages, one might expect that updates to various
packages happen all the time. However, only one version of a given package can be
installed in the same Python instance; that is, a specific package name can be imported
only once, even if there are multiple versions available. To enable testing of new
packages, and to enable version-dependent programs to run with outdated packages,
Python allows for virtual environments. A virtual environment is just a directory tree
containing a Python installation, along with a set of version-specific packages.

Python itself can create virtual environments (also known as venvs), using the
command venv. Likewise, many IDEs can create such environments. If you are using a
venv, be aware that pip installs packages and modules local only to that venv. That is,
if you download a package specific to a venv, that package will not be included with,
or available to, the next venv that you create.

Virtual environments are very useful and provide a feature missing in MATLAB: an
ability to switch between different module and package versions for testing or

41

https://pip.pypa.io/en/stable/

debugging.

Path Management
You may have noticed that we’ve not mentioned path management. No doubt you are
aware that path management is important to MATLAB: classes, functions and scripts
must reside on the path, and file naming conventions must be followed.

In contrast, Python path management tends to be simpler. The path will likely be
shorter, more easily managed, and once a module is imported, all of its functions are
directly accessible. By default, the packages that you install with the pip utility will
reside in a single folder under the Python installation folder. To list your specific site
folder(s), perform the following command:

>>> import site; site.getsitepackages()

If you know the name of a specific package you’ve already installed, you can obtain
information about that package, including its installation directory. Use the following
command entered into a Windows command window to obtain information about a
package named, e.g., package-name:

pip show package-name

If you are using a virtual environment, the venv tool or your IDE will create its
necessary virtual environment folders and update the path variable automatically.

Here are the basics for viewing and modifying the Python search path.

The Python search path is saved in a variable called sys.path.

To view the directories currently on the path, you can use the following:

>>> import sys; print(sys.path)

To append the system path, use, e.g.,

>>> sys.path.append('C:Temp')

NumPy
We promised several times to show you how Python supports matrices, higher-
dimensional arrays, and associated numeric and scientific computations. That time has
arrived.

One of the design objectives for the core Python library was, and remains, simplicity.

42

Matrices and higher-dimensional arrays are thus provided by add-on packages. By far
the most popular package to provide an array feature is NumPy. The NumPy package
bills itself as the fundamental package for scientific computing with Python.

We’ll cover some NumPy basics, just to show you that MATLAB’s array features are
available in Python. But for a full discussion of NumPy, you’ll want to visit the official
NumPy website.

To begin, install NumPy.

C:> pip install numpy # Enter from a Windows terminal

We’ll focus on the a NumPy-specific data type called ndarray, which has an alias
called array. This data type provides storage for a multi-dimensional array of
homogeneous elements. Let’s first create and print a 1-d array of integers:

>>> import numpy as np
>>> a = np.array([1,2,3]) # Note that we input a list.
 # Omitting the brackets generates an error.
>>> print(a)
[1 2 3]

Create and print a 2-d array of integers. There are numerous ways to create arrays in
NumPy, and we’ll explore a few of those.

>>> a = np.array([(0, 1, 2, 3),
... (4, 5, 6, 7)])
>>> print(a)
[[0 1 2 3]
[4 5 6 7]]

>>> a = np.arange(8).reshape(2,4) # Equivalent to the above

>>> a[0,0] # Single brackets now; different from core Python
1

>>> a[0,1] = 99
>>> print(a)
[[1 99 3]
[4 5 6]]

The array() function transforms sequences of sequences into two-dimensional arrays,
sequences of sequences of sequences into three-dimensional arrays, and so on.

NumPy provides several functions that will immediately be familiar, for example:
zeros(), ones(), and linspace().

Regarding operations on arrays, NumPy performs elementwise computations by
default; linear algebra operations are obtained through special functions.

>>> a = np.array([(1,2,3), (4,5,6)])
>>> a += 1 # An in-place operation, equivalent to a = a+1

43

http://www.numpy.org/

>>> print(a)
[[2 3 4]
[5 6 7]]

>>> a *= a # Element-wise multiplication, equivalent to a =
a*a
>>> print(a)
[[4 9 16]
[25 36 49]]

Recall from earlier that Python uses the ‘+’ symbol to concatenate arrays, even
numeric ones. NumPy overrides that behavior, giving you elementwise operations.
E.g.,

>>> a + a
array([[8, 18, 32],
 [50, 72, 98]])

Now let’s look at a matrix product, using the @ operator. Rather than save and then
print() the result, we’ll skip the save and allow Python to print to the screen.

>>> a = np.array([[1,2]
 [3,4]])
>>> b = np.array([[2,3]
 [4,5]])
>>> a @ b
array([10, 13],
 [22, 29])

NumPy has dozens of functions with which to perform the usual array operations you
would expect of an analytics library. You can query an array size, reshape an array,
extract elements or slices, compute statistics such as cov, mean, std and var. With
NumPy you can perform linear algebra operations such as transpose, inverse and
multiplication. You can compute eigenvalues. You can sort and filter arrays. Logical
operations include the familiar any(), all() and where() operations.

By default, NumPy will operate on arrays element-wise. This is a departure from
MATLAB’s vectorized operations. However, NumPy provides a vectorization feature
via its vectorize class. As a simple example, suppose you have a function called add.py
which inputs two numbers, adds them and returns the result. Below is the function, and
how you would vectorize it.

>>> import numpy as np
>>> def add(a, b):
... return a+b

>>> add_v = np.vectorize(add) # Returns a function
>>> add_v([1, 2, 3], [4, 5, 6]) # Add two vectors
array([5, 7, 9])

While it’s not a core topic of this article, we should mention that NumPy offers a
tremendous performance benefit to numeric calculations. Calculations that you might
compute in pure Python can run 10x to 100x faster using NumPy. This performance
improvement results from several key features of NumPy. Consider the simple act of

44

http://add.py

adding two lists. In pure Python, each element of the list will be a pointer to an object,
a float or an int, for example, with all of the attendent overhead of processing those
objects. In NumPy, those lists will be reduced to arrays of a homogenous data type,
with far less processing overhead. Secondly, many NumPy functions are implemented
in the C language, compiled for speed. And thirdly, with NumPy, high-level Python
for-loops get pushed down into the C libraries, with the latter being far faster than the
former.

NumPy has much more to offer; we simply cannot cover all of its capabilities here. But
a bit of good news for you: with a MATLAB background you’ll find that the NumPy
documentation is familiar, and once you read through its documentation you’ll feel
much more at ease with Python. And if you don’t particularly like the NumPy language
syntax, keep reading to the Pandas section. Pandas is built on top of NumPy and
provides a syntax you will be much more comfortable with.

SciPy
The NumPy package is built upon the core Python language and provides an N-
dimensional array type. The SciPy package is built upon the NumPy package and
provides a tremendous breadth of mathematical, scientific and engineering algorithms.
SciPy is actually one component of a larger ecosystem of packages, including:
NumPy, Matplotlib, IPython, Pandas and numerous others. Generally, when you
import SciPy, you’ll want to import NumPy. Depending on your needs, you’ll import
the other packages as required. When you import SciPy and its friends, you are
creating a Python computational environment that is similar to what you are
accustomed to with MATLAB.

SciPy provides a collection of modules targeted toward science and engineering. SciPy
modules include algorithms for linear algebra, FFTs, integration, interpolation,
optimization, signal and image processing, differential equations, statistics and more.
SciPy also extends Python’s computational features by providing advanced charting,
database interactivity and parallel processing. SciPy can even read and write MAT-
files.

Be aware that some SciPy functions also appear in NumPy, and there will be non-trivial
differences between them. This duplication exists for NumPy backward compatibility
reasons. A good guideline is to use NumPy for its multi-dimensional array type, and
SciPy for its algorithms.

The ecosystem built on SciPy is vast. Fortunately, the SciPy team maintains an
extensive list that is categorized by scientific discipline and computational topic. We
encourage you to browse through the offerings. But first, let’s take a quick look at
SciPY.

To begin, install SciPy.

C:> pip install scipy # Enter from a Windows terminal

45

http://www.numpy.org/
https://www.scipy.org/
https://www.scipy.org/topical-software.html

Let’s solve linear system [A]{x} = {b}, where [A] and {b} are given as:

>>> import numpy as np
>>> from scipy import linalg

>>> A = np.array([[1, 2], [3, 4]])
>>> b = np.array([[5], [6]])
>>> x = np.linalg.solve(A, b)
>>> print(x)
[[-4,],
[4.5]]

Check that the solution is correct. Compare the multiplication of [A]{x} to {b}.

>>> Ax = np.dot(A,x)
>>> tf = all(np.equal(Ax, b))
>>> print('Solution matches:', tf)
Solution matches: True

The SciPy package has extensive functionality, and extensive documentation. The
online documentation at scipy.org is excellent, and you’ll eventually find yourself
spending time there.

Pandas
Building on NumPy and SciPy is the Pandas package. Pandas is all about data analysis
and modeling. The pandas website states, pandas has ‘the broader goal of
becoming the most powerful and flexible open source data analysis / manipulation tool
available in any language.’ Note that the name pandas, by convention, is written in all
lowercase.

If you rely upon MATLAB’s @dataset or @table classes, or if you have coded your
own version of these classes, or if you need to analyze and model data, you’ll want to
explore the pandas package. Pandas offers both a Series class for 1-d data, and a
DataFrame class for 2-d data. Each of these classes comes with labels, indices, and
broad functionality for data import and export, data cleansing, analysis and modeling,
charting and numerous other tasks.

Pandas depends upon and extends the NumPy package. Pandas does not depend
upon, but interoperates with, SciPy. It’s quite possible that a lot of code you had to
write before in MATLAB simply goes away now, as the code has been written for you
in Python’s NumPy/SciPy/pandas ecosystem.

46

https://docs.scipy.org
http://scipy.org
https://pandas.pydata.org

Development of pandas began in 2008 at AQR Capital Management, and the library
was open-sourced in 2009. Pandas does many of the things that you’ve grown
accustomed to in MATLAB. It is difficult to reduce the list of pandas’ capabilities to a
set that might be most important to you, but here’s an attempt.

Pandas can read data from a wide variety of data sources, including CSV and other
delimited files, Excel, databases, HDF5, HTML and JSON. Pandas has facilities for
storing variable-frequency timeseries data, both 1-d and 2-d, and for managing
timeseries data with operations such as filling, converting frequencies, and date
shifting. As with NumPy, pandas provides indexing and slicing of your data, and
numerous relational operations such as group by, join and merge. Data and axes can be
labeled and indexed. Pandas provides facilities for data analysis and modeling, and
pandas interoperates with the functions provided by SciPy.

Let’s try an example using pandas. Suppose you notice a news article about the
Consumer Price Index (CPI) for U.S. Housing and want to explore some of that data.
An online search leads you to the Bureau of Labor Statistics and to a set of csv files
on their website. In the following code, we’ll read the CPI data, explore it, reduce its
frequency from monthly to annual, and then chart it.

To begin, install pandas.

C:> pip install pandas # Enter from a Windows terminal

Next, let’s read the online data, and take a quick look at the contents:

>>> import pandas as pd

>>> URL =
'https://download.bls.gov/pub/time.series/cu/cu.data.12.USHousing'
>>> df = pd.read_csv(URL, sep='t') # df is short for
DataFrame
>>> df.head()

series_id year period value

0 CUSR0000SAH 1967 M01 30.5
1 CUSR0000SAH 1967 M02 30.5
2 CUSR0000SAH 1967 M03 30.5
3 CUSR0000SAH 1967 M04 30.6
4 CUSR0000SAH 1967 M05 30.7

Pandas was able to read the csv file and place it directly into a DataFrame. Note that
Pandas added the first column (a row index) automatically. We won’t need the
series_id column, so let’s drop it. Also, it turns out that the CPI data is rather sparse
before 1940, so let’s keep only years 1940 and later:

>>> df = df.drop('series_id', axis='columns')
>>> df = df[df.year >= 1940]

The column labeled ‘period’ denotes a month. E.g., M01 is January, M02 is February,
etc. Let’s use some of panda’s built-in SQL functionality to group the CPI indices by

47

https://www.bls.gov/

year, taking the mean CPI across the months of each year. Note how we are chaining
operations together:

>>> df = df.groupby(['year']).mean()

Finally, let’s clean up the column labels and plot the data:

>>> df = df.rename({'value':'Mean CPI'}, axis='columns')
>>> df.plot()

Plotting the data provides the figure above. Several comments are warranted here.
First, the pandas library was able to successfully load a remotely-hosted data set that
we did not even bother to pre-inspect. Pandas placed the data into its DataFrame
object, automatically included labels and inserted a row index. Using pandas’
functionality, we were then able to remove unwanted data, both rows and columns,
reduce it to an annual frequency, clean up the labels and plot. We used a total of nine
commands.

While pandas’ syntax differs from MATLAB’s, the commands we used to analyze the
CPI data should feel familiar. Pandas has a tremendous amount of functionality that
we’ve not touched upon, but hopefully we’ve demonstrated that the combination of
Python/NumPy/SciPy/pandas provides an analysis environment similar to what you use
with MATLAB.

Full-Stack Python
Full-Stack Python refers to the design and deployment of web-based applications with
significant server-side functionality. Using nothing but Python and supporting Python-
based libraries, one can create complex web apps which integrate into traditional
websites and back-ends. Python libraries are available for web frameworks (e.g.,
Django and Flask) and front-end user interfaces (e.g., Plotly Dash).

48

https://www.djangoproject.com/
https://flask.palletsprojects.com/
https://plotly.com/dash/

As an example, one of the authors of this article (Patterson) has written a web
application for stress-testing trading portfolios comprised of options, futures, and
swaps. This app employs complex mathematical modeling, large data sets, extensive
computations, and a sophisticated user interface. The app is written completely in
Python. A screen shot of the app is shown below. For a demo of the application or to
inquire about licensing, please contact its author.

As discussed above, Python can handle both the front-end and back-end of a web
app, and also everything in between, such as analytics and database access. Rather
than belabor this topic, we’ll refer you to an excellent online resource called,
appropriately, Full Stack Python written by Matt Makai.

MATLAB and Python, Together
The next item in the Python ecosystem that we’d like to introduce is one that will be
familiar to you: MATLAB. It may seem odd to include MATLAB as part of the
Python ecosystem, but the two languages play supporting roles to one another. If you
happen to own a MATLAB license, why not employ it as part of your Python
programming efforts?

Python can call MATLAB scripts and functions. In fact, The MathWorks has
published an API for Python package that you can import into your Python workspace
to facilitate such calls. The package enables you to launch MATLAB from a Python
script, transfer data to the MATLAB instance, invoke functions, and return results.

Why, you might ask, would you want to call MATLAB scripts from Python? We think
there are several use cases. The first is one of deployment. Suppose you have analytics
functionality built in MATLAB but want to deploy those analyses on the web. Python
has, though we’ve not discussed it here, state-of-the-art GUI toolkits that can easily be

49

https://www.fullstackpython.com/
https://www.mathworks.com/help/matlab/matlab_external/call-matlab-functions-from-python.html

deployed on AWS, the Google Computing Platform or otherwise. You can construct
your analytics front-end in Python, allowing it to communicate with your MATLAB-
based back-end library.

A second use case is one of developer efficiency. The knowledge you’ve obtained in
MATLAB continues to be valuable: you may have an extensive library of M-code that
you cannot justify recreating, or perhaps you have a wealth of experience with a
MATLAB toolbox and don’t want to relearn that in a new language. In these situations,
you’ll want to retain your work in MATLAB even as you branch out in Python.

Just as MATLAB is part of the Python ecosystem, the reverse is also true: Python is
part of the MATLAB ecosystem. This latter perspective may be the one that best
applies to you. We’re happy to report that you can experiment with Python as a
programming language without leaving your established MATLAB-based platform.

Your MATLAB scripts can call newly developed Python code, and the MathWorks
has published functions to facilitate that interaction. Why, you might ask again, would
you want to call Python scripts from MATLAB? The answer is that Python does some
things very well, such as reading online data sources and databases. The possibilities
here are unlimited and depend upon your specific needs. As we stated in the beginning
of this article, knowing both languages will provide you with opportunities not
previously imagined.

Integrated Development Environments (IDEs)
Let’s return to a topic that we first discussed at the very beginning of the article: IDEs.
There are at least twenty IDEs to choose from. One called IDLE ships with the Python
download but is limited in functionality. If you choose to begin developing with
Python, you’ll want to upgrade to one of the other choices.

The authors sometimes use the community (free) version of PyCharm. We also use the
Professional (not free) version. PyCharm provides code completion, code formatting,
syntax highlighting, runtime error checking, project navigation, debugging, and a slick
interface. PyCharm integrates with several source control libraries, unit testing
frameworks, databases, virtul environments and the PyPy package management library.
PyCharm also integrates with the scientific libraries we’ve discussed in this article and
supports the IPython magic commands. PyCharm is every bit as sophisticated as the
MATLAB IDE, and even more so.

If you happen to use Visual Studio, you can stay with that editor as it supports Python.
And if you’re more of a command-line person, have a look at IPython, which is a
Python prompt with auto-completion, history and shell capabilities.

Lastly, we mentioned earlier that an IDE called Spyder is available, and it provides a
programming environment similar to MATLAB’s. From the Spyder website:

Spyder is a powerful scientific environment written in Python, for Python, and
designed by and for scientists, engineers and data analysts. It offers a unique
combination of the advanced editing, analysis, debugging, and profiling functionality of

50

https://www.mathworks.com/help/matlab/getting-started-with-python.html
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
https://www.jetbrains.com/pycharm/
http://packages.pypy.org/
http://ipython.org/
https://www.spyder-ide.org/

a comprehensive development tool with the data exploration, interactive execution,
deep inspection, and beautiful visualization capabilities of a scientific package.

Spyder has many features you’ll recognize. Advanced editing features include syntax
highlighting, real-time code analysis, code cells, on-demand completion, tool tips,
window-splitting and more. The IDE includes a debugger and profiler, interactive
execution, a variable explorer, data explorer and visualizer, and version control. The
Spyder IPython console window will assist you with function tips, automatic
indentation, syntax highlighting and command history. You can open multiple console
windows, and each will operate independently of the others.

Spyder is similar to PyCharm but targeted to data scientists and analysts. Spyder even
knows about and integrates with NumPy, SciPy, and Pandas.

Pictured below is Spyder along with our earlier example of using Pandas to visualize
BLM data. The window on the left is the editor displaying our code. To the bottom-
right is the Python console, along with integrated graphics. At the top-right is the
variable explorer; superimposed upon it is the output DataFrame which we obtained by
double-clicking on that variable in the explorer window.

Spyder is written in the Python language, is open source and is free of charge.

Anaconda
Spyder is a core component of a Python distribution called Anaconda. The Anaconda
distribution mimics a MATLAB installation, in that it provides a complete computing
environment: the Python engine, all of the packages we covered earlier, a package
manager, the Spyder IDE, and more. With the Anaconda distribution, you no longer
have to go shopping for all of these various components. Anaconda gives you the best
of breed in each category, all targeted toward data science.

In addition to Python, Anaconda includes Jupyter Notebook, which is a Python engine
that allows you to create interactive notebooks of Python code, output of that code,
any associated charts, and inline descriptive text. These notebooks are great for

51

https://ipython.org
https://www.anaconda.com/
https://jupyter.org/

teaching and collaboration.

Anaconda is free and open source. In addition, the Anaconda Cloud provides you with
online storage to collaborate on modules, packages, notebooks and environments. The
Cloud is free for publicly-shared projects. For a monthly fee you can host private
collaborations.

With more than six million users, Anaconda is a popular distribution worthy of your
attention.

Closing
If you have read this far, you must be interested in Python. There’s more to learn, of
course, but if you have absorbed the concepts you’ve just read about, you are already
functional with the Python language.

If you did not perform the installations and code snippet executions provided
throughout this article, a good next step would be to read through the article again,
performing all of the installations and examples. When we first mentioned IDEs (back
on page 3) we mentioned that you should perhaps wait to choose an IDE. But now’s
the time. If you want to put together your own Python computing environment, you
can download Python, the packages you need, and the IDE of your choice.
Alternatively, you can skip all of that and just download Anaconda.

Two documents are particularly important for your continued study. The Python
Library Reference will tell you about the functions in the Python Standard Library.
We’ve touched on many functions in this article, but the Library Reference is the
definitive guide. Secondly, the Python Language Reference is a comprehensive
document that will tell you everything about the language’s design, syntax and
semantics.

You absolutely should visit the Python Software Foundation home page. From there
you can find the above two documents, tutorials, how-to guides, code examples,
installation guides and much more.

If you are more of a book reader, there are numerous books worthy of your time and
dollars. On the topic of Python and data science, one book that we recommend is
O’Reilly’s Python for Data Analysis, written by Wes McKinney, creator of the pandas
library. This is an incredibly well-written and thorough book, an enjoyable read. You
can purchase a digital version and then cut-and-paste examples from the book into
your Python interpreter. Or better, you can follow along in the book with an
accompanying Jupyter Notebook that provides interactive examples for you.

We thank you for your time, and we hope you have found this article worthy of that
time. If you have feedback, if you have found typos, incorrect statements, important
omissions, or if you have suggestions for improving this document, we’d like to hear
from you. Our biographies and contact information are listed below.

52

https://anaconda.org/
https://docs.python.org/3/library/index.html
https://docs.python.org/3/reference/index.html
https://www.python.org/
http://shop.oreilly.com/product/0636920050896.do

Author Biographies
Michael Patterson has worked in commodity trading for twenty years, with roles in
technology, fundamental analysis, business intelligence and risk management. Michael
lives in Tulsa, OK with his wife and two children. Michael can be reached via his
LinkedIn profile or by email at michael.patterson@demextech.com.

Andrew Janke is a software developer with over a decade of experience building
MATLAB-based systems for financial analysis applications. Andrew specializes in
building data analytics platforms that integrate multiple languages and technologies,
including MATLAB, Java, and SQL. He can be reached at his website, LinkedIn
profile or by email at andrew.janke@demextech.com or andrew@apjanke.net.

Michael and Andrew currently work at Demex Technologies, where Michael is
Director, Commodity Analytics and Andrew is Director, Quantitative Systems. Among
its products, Demex Technologies provides to its clients an online platform for
researching and quoting complex commodity and weather-based financial derivatives.
Not surprisingly, the platform is written in a mix of languages, including MATLAB and
Python.

The Demex Group
The authors of this article are founding members of The Demex Group, a firm which
helps clients adapt to the impacts of changing weather and climate. A quick
background on The Demex Group will help you understand why we’ve taken the time
to write this article for you.

We help our clients quantify their business exposure to weather and climate risks, and
we facilitate the transfer of those risks to third parties. We do this by providing our
clients access to algorithms that help them discover and mitigate their risk exposures.
Our algorithms are hosted on a sophisticated, web-based platform comprising nearly
one hundred man-years of efforts. To no surprise, this platform is written largely in the
MATLAB and Python languages.

Analytics and technology are the core of our business, and client relationships are the
foundation of that business. We share our platform and our analyses with our clients,
and in so doing we empower them and help protect them from weather and climate
risks. This article is just one small component of that effort: we’d like to share with you
the knowledge we’ve acquired in our work.

53

https://www.linkedin.com/in/mtpatt/
mailto:michael.patterson@demextech.com
https://apjanke.net/
https://www.linkedin.com/in/andrewjanke0/
mailto:andrew.janke@demextech.com
mailto:andrew@apjanke.net
https://thedemexgroup.com
file:///C:/Users/Owner/Downloads/www.demex.tech

Contributors
Numerous people have graciously offered reviews, corrections and contributions to
this document. We wish to recognize and thank them for their time and talents. Their
names, with links to their LinkedIn profiles are:

Yan Holtz
Scott Buechler
Kevin Bowers
Michael Swearingen

We would like for this list to grow. Please consider adding to the article. A list of
suggested new topics resides on the article’s GitHub public repository.

54

https://www.linkedin.com/in/yan-holtz-2477534a
https://www.linkedin.com/in/rscottyblinkedin
https://www.linkedin.com/in/kevinjbowers
https://www.linkedin.com/in/michael-swearingen-58126010
https://github.com/apjanke/PythonForMatlabProgrammers

	Python for MATLAB® Programmers
	Learning and Leveraging Python When You Know MATLAB

	Introduction
	Objectives of this Article
	Editing and Distributing this Article
	Conventions
	MATLAB and Python, at a High Level
	Installation
	Integrated Development Environments (IDEs)
	Python Modules and Packages
	The Python Style Guide
	Getting Help

	Python Types
	Numeric Types
	Booleans
	Sequences
	Strings
	Lists
	Sets
	Tuples
	Lists vs. Tuples
	Dictionaries
	Python Literals
	Closing

	Python Control Structures
	Flow Control
	List Comprehensions
	Iterables and Iterators
	Generators
	Lists, Revisited
	Functions
	Warnings
	Exceptions
	Listing the Python Version
	Interacting with the Operating System
	Miscellaneous

	Plotting
	Object-Oriented Programming in Python
	Namespaces and Scopes
	Classes
	Mutability
	Copy That
	Biggest Differences

	The Python Ecosystem
	Integration with Source Code Control
	Back to Modules and Packages
	Path Management
	NumPy
	SciPy
	Pandas
	Full-Stack Python
	MATLAB and Python, Together
	Integrated Development Environments (IDEs)
	Anaconda

	Closing
	Author Biographies
	The Demex Group

	Contributors

